Gams Travelling Salesman Problem Model
Autor: Jannisthomas • February 7, 2018 • 692 Words (3 Pages) • 771 Views
...
MODEL IE413_TSP /ALL/;
option optcr = 0.0 ;
SOLVE IE413_TSP MINIMIZING opt USING MIP;
DISPLAY opt.l, x.l, x.m, u.l;
3.b.SOLVE SUMMARY:
MODEL IE413_TSP OBJECTIVE opt
TYPE MIP DIRECTION MINIMIZE
SOLVER CPLEX FROM LINE 133
**** SOLVER STATUS 3 Resource Interrupt
**** MODEL STATUS 8 Integer Solution
**** OBJECTIVE VALUE 10042.0000
RESOURCE USAGE, LIMIT 1000.245 1000.000
ITERATION COUNT, LIMIT 691564 2000000000
IBM ILOG CPLEX Jul 4, 2010 23.5.1 WIN 18414.18495 VS8 x86/MS Windows
Cplex 12.2.0.0, GAMS Link 34
GAMS/Cplex licensed for continuous and discrete problems.
Cplex MIP uses 1 of 8 parallel threads. Change default with option THREADS.
MIP status(107): time limit exceeded
Fixed MIP status(1): optimal
Resource limit exceeded.
MIP Solution: 10042.000000 (691564 iterations, 28812 nodes)
Final Solve: 10042.000000 (0 iterations)
Best possible: 9833.708482
Absolute gap: 208.291518
Relative gap: 0.020742
We tried to reach the best possible solution, however because of the fact that the program exceeded the resource capacity we couldn't obtain the best feasible solution. The solution we found has relative gap of 2%, which is acceptable.
3.c.SOLUTION:
1 2 3 4 5 6
14 1.000
19 1.000
25 1.000
33 1.000
43 1.000
63 1.000
+ 7 8 9 10 11 12
15 1.000
16 1.000
45 1.000
48 1.000
49 1.000
75 1.000
+ 13 14 15 16 17 18
6 1.000
10 1.000
54 1.000
64 1.000
65 1.000
77 1.000
+ 19 20 21 22 23 24
17 1.000
23 1.000
32 1.000
44 1.000
62 1.000
66 1.000
+ 25 26 27 28 29 30
11 1.000
24 1.000
61 1.000
69 1.000
73 1.000
79 1.000
+ 31 32 33 34 35 36
7 1.000
9 1.000
46 1.000
59 1.000
70 1.000
76 1.000
+ 37 38 39 40 41 42
22 1.000
34 1.000
57 1.000
58 1.000
68 1.000
71 1.000
+ 43 44 45 46 47 48
2 1.000
20 1.000
21 1.000
26 1.000
35 1.000
80 1.000
+ 49 50 51 52 53 54
8 1.000
13 1.000
28 1.000
38 1.000
41 1.000
51 1.000
+ 55 56 57 58 59 60
5 1.000
39 1.000
52 1.000
55 1.000
60 1.000
72 1.000
+ 61 62 63 64 65 66
3 1.000
12 1.000
27 1.000
30 1.000
40 1.000
53 1.000
+ 67 68 69 70 71 72
18 1.000
29 1.000
42 1.000
47 1.000
50 1.000
74 1.000
+ 73 74 75 76 77 78
4
...