Essays.club - Get Free Essays and Term Papers
Search

Feg 1034 Calculus & Analysis 1

Autor:   •  November 14, 2018  •  665 Words (3 Pages)  •  555 Views

Page 1 of 3

...

Hence, = is horizontal asymptotes for .

FEG 1034 Calculus & Analysis 1 7

---------------------------------------------------------------

FEG 1034 Calculus 1 Chapter 02[pic 35]

[pic 36]

2.2 Inverse Functions

[pic 37]

= 2 + 1

[pic 38][pic 39]

is input, is output, but what if I want as output, as input? You need to reverse the function, how to do?

Let = 2 + 1

= −21, this time your is output, as input, we can express in

−1= −2 1

[pic 40][pic 41][pic 42][pic 43]

−1 = 2

−1

+ 1 = and −1

=

2 +1 −1

=

2

2

[pic 44][pic 45]

FEG 1034 Calculus & Analysis 1 8

---------------------------------------------------------------

FEG 1034 Calculus 1 Chapter 02[pic 46]

[pic 47]

−1 = −1 =

[pic 48][pic 49][pic 50]

What is the characteristic of inverse functions?

- It will always reflect its’ function on = line

- Since it reflect on = line,

−1 = ⟹ =

[pic 51][pic 52][pic 53]

- need one to one function, then have the existence of −1 !

[pic 54]

How to determine one to one function?

FEG 1034 Calculus & Analysis 1

9

---------------------------------------------------------------

FEG 1034 Calculus 1 Chapter 02[pic 55]

[pic 56]

Horizontal line test

If the graph have any intersect horizontal line twice or more, then it’s not one to one function.

[pic 57]

10

---------------------------------------------------------------

FEG 1034 Calculus 1 Chapter 02[pic 58]

[pic 59]

First derivative test

[pic 60]

If the function can be derived and if function doesn’t have inverse function.

[pic 61]

---------------------------------------------------------------

′ = 0, then the

[pic 62]

= 3 + − 1

= 3 − + 1

′ = 3 2 + 1 = 0

′ = 3 2 − 1 = 0

3 2 + 1 = 0

3 2 − 1 = 0

2 = −

1

= ±

1

3

3

Since 2 can’t be negative in

= 0 when = ±

1

3

Real number, so ′ ≠ 0

does not have −1

Hence, −1 exist.

[pic 63][pic 64][pic 65][pic 66][pic 67][pic 68][pic 69]

11

---------------------------------------------------------------

FEG 1034 Calculus 1 Chapter 02[pic 70]

[pic 71]

2.3 Derivative of inverse function

[pic 72]

is a function,

′ is tangent slope ofat , point.

−1 is its’ inverse function,

−1 ′ is tangent slope of −1 at , point.

[pic 73][pic 74][pic 75][pic 76][pic 77][pic 78][pic 79]

−1 ′ =

1

Reciprocal value

[pic 80][pic 81]

FEG 1034 Calculus & Analysis 1 12

---------------------------------------------------------------

FEG 1034 Calculus 1 Chapter 02[pic 82]

[pic 83]

2.3 Derivative of inverse function

= 2 ′ = 2

−1 is its’ inverse function,

−1 ′ is tangent

...

Download:   txt (5.3 Kb)   pdf (74.8 Kb)   docx (576 Kb)  
Continue for 2 more pages »
Only available on Essays.club